### Benefit and Cost Assessment of Integrating Arrival, Departure, and Surface Operations with ATD-2

### **NRA Final Briefing**

### ATAC Corporation, MCR Federal, Massachusetts Institute Of Technology

03/30/2018







### **Our Team**

- ATAC Corporation
  - Martin Popish, Natasha Luch, Valerie Sui, Kennis Chan, Jason Bertino, Brandon Huang, Evan Lohn, Aditya Saraf

### MCR Federal

- Marc Rose, Jaime Cardillo, Benjamin Levy (former)
- Massachusetts Institute of Technology
  - Hamsa Balakrishnan, Sandeep Badrinath, Karthik Gopalakrishnan
- Engility, a TASC Company (former)
  - Husni Idris



# Outline

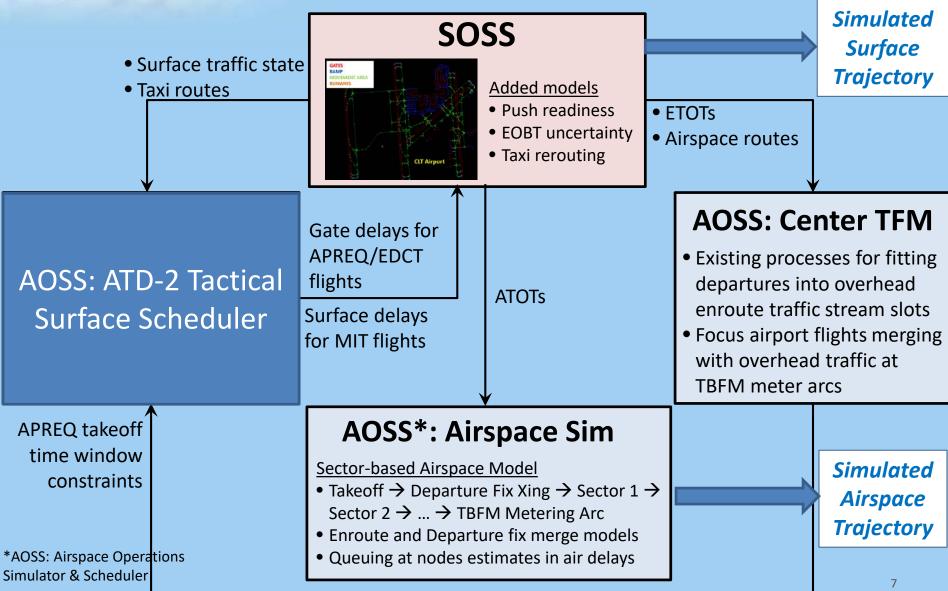
- Quick recap of NRA objectives
- Benefits analysis methodology
- Simulation platform
- Simulation scenario selection
- High-fidelity simulations results
- Benefits nationalization results
- Benefits monetization and annualization results
- Cost analysis results
- Final benefits and costs analysis
- Conclusions and future work ideas



# **Recap of NRA Objectives**

- Develop a catalog of operational shortfalls, ATD-2 benefit mechanisms, performance metrics
- Select sites for assessing benefits through modeling and fasttime sims
- Develop simulation environment and conduct simulation experiments
- Analyze benefits results and extrapolate to nationwide benefits
- Analyze costs for implementing ATD-2 on a nationwide scale




# Methodology

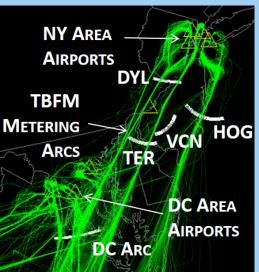
- Identify operational shortfalls that ATD-2 can address and associated ATD-2 benefit mechanisms and benefit metrics
- Develop a combined airspace-surface simulation platform that can simulate key operational shortfalls and benefit mechanisms
- Conduct *high-fidelity surface-airspace simulations* for simulating current-day and future ATD-2 operations at *three airport sites* and *carefully selected simulation days*
- Extrapolate results to FAA Core 30 airports using *medium-fidelity queuing simulation models* and FAA *TFDM benefits analysis results*
- Extrapolate to annualized benefits by conducting medium-fidelity simulations at a larger set of days and by using carefully generated *"similar number of days in a year"* based multipliers
- Follow FAA-recommended processes for cost analysis
- Compute advantages to the FAA's TFDM program: enhancement in benefits, reduction in costs, overall a beneficial impact on the TFDM B/C ratio



### COMBINED SURFACE-AIRSPACE SIMULATION PLATFORM

# Combined Airspace-Surface



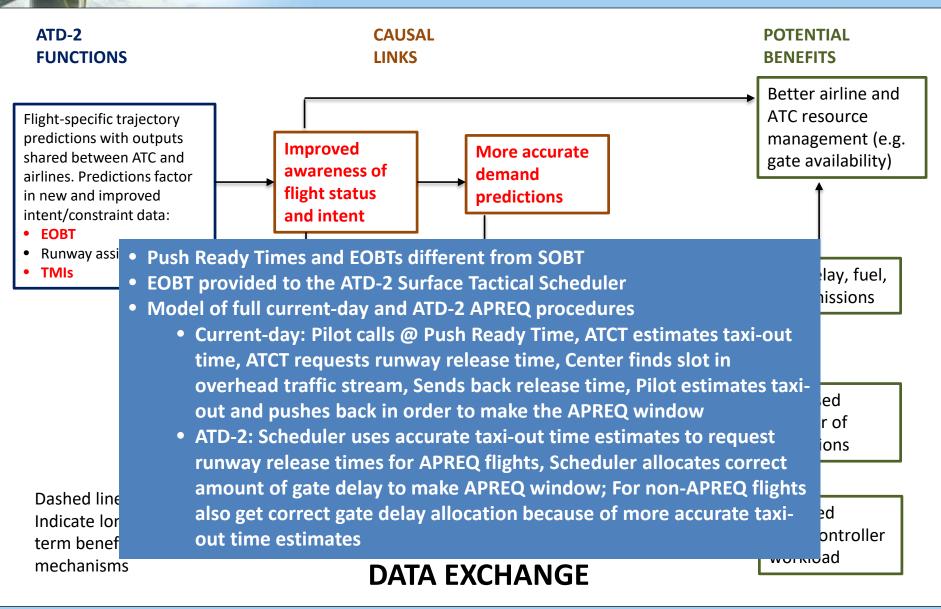

# CLT Combined Surface-Airspace Model

#### SURFACE MODEL FEATURES:

- CONTROLLER SURFACE
  CONFLICT RESOLUTION MODEL
- MODEL OF CORDINATION WITH RECEIVING CENTER: APREQ AND EDCT IMPLEMENTATION MODEL INCL. UNCERTAINTIES
- RUNWAY SEPARATIONS, SEQUENCING FOR MILES-IN-TRAIL RESTRICTION ADHERENCE
- ATD-2 DEPARTURE METERING EMULATION

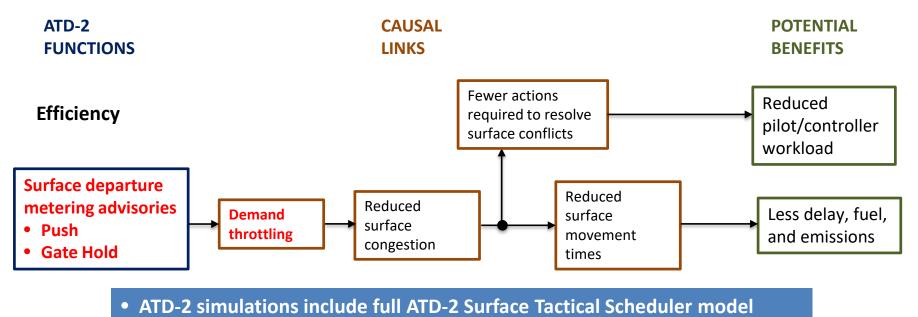
#### AIRSPACE MODEL FEATURES:

- DEPARTURE FIX AND ENROUTE MERGING MODEL
- MODEL OF COORDINATION WITH SURFACE DEPARTURE TRAFFIC MGMT: TIMELINE-BASED ELECTRONIC APREQ REQUESTS (TBFM IDAC INTEGRATION)
- SECTOR TRANSIT TIME
  UNCERTAINTY MODELS
- MODEL OF AIRBORNE DELAYS FOR CENTER MILES-IN-TRAILS



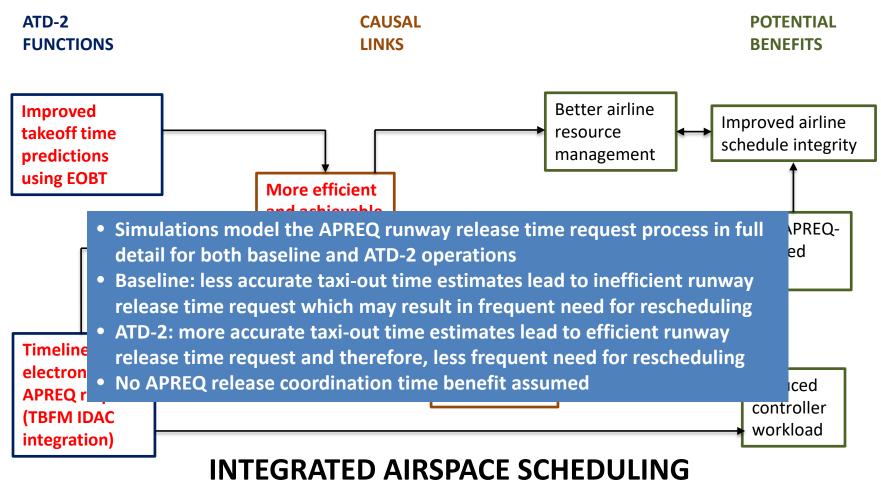

ATAC AOSS MODELS AIRSPACE TRANSIT FROM RUNWAY TAKEOFF TO TBFM METER ARC CROSSING

SIMULATION INJECTION ARCS FOR NON-CLT FLIGHTS CLT NASA SOSS Models SURFACE TRAJECTORIES




# Modeling of ATD-2 Benefit Mechanisms






### **Modeling of ATD-2 Benefit Mechanisms**



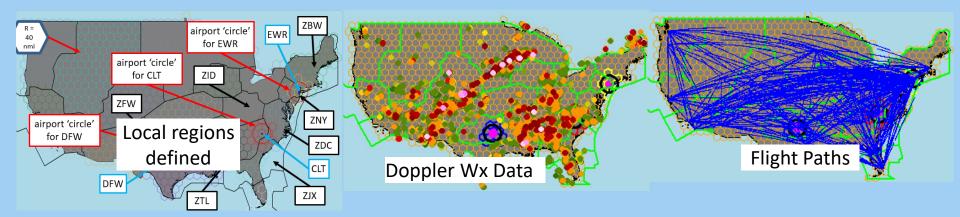
- Follows the NASA scheduler steps
  - Model the dynamics of the scheduler with the departures transitioning from "UNCERTAIN" to "AT GATE PLANNED" to "AT GATE READY" and "TAXIING" phases
  - Additional models for departure-fix MIT and MINIT restrictions application at runway departure

# Modeling of ATD-2 Benefit Mechanisms



#### **TMI COMPLIANCE**




### SIMULATION DAYS/SCENARIOS SELECTION



# **Simulation Days Selection**

**Considers Weather and Traffic Demand Impacts** 

- Goal
  - Select a set of simulation dates for benefits estimation ATD-2
  - Support extrapolation across the CONUS on an annual basis
- Local and national weather/traffic demand conditions considered for days selection
  - Weather impact traffic index (WITI) computation for NAS-wide and regional weather impact
  - Traffic Management Initiative (TMI) impact on departure airport also captured using APREQ and MIT impact indices





### **Simulation Dates for KCLT**

|           | TMI/<br>APREQ | Weath   |     | l      | Recom.    | #    | ]        | Total<br>Daily |
|-----------|---------------|---------|-----|--------|-----------|------|----------|----------------|
|           | ~             | Weather |     |        |           |      | •        | •              |
| Condition | Indices       | CONUS   | Apt | Demand | Date      | Days | % Occur. | Precip (in)    |
| 1         | 2             | 2       | 2   | 2      | 6/15/2016 | 16   | 14.3%    | 2.74           |
| 2         | 1             | 2       | 2   | 2      | 5/17/2016 | 15   | 13.4%    | 0.87           |
| 3         | 2             | 2       | 1   | 2      | 6/1/2016  | 13   | 11.6%    | 0.1            |
| 4         | 1             | 2       | 1   | 2      | 8/15/2016 | 8    | 7.1%     | 0.27           |
| 5         | 1             | 1       | 1   | 2      | 5/6/2016  | 6    | 5.4%     | 0.28           |
| 6         | 0             | 1       | 1   | 2      | 8/13/2016 | 4    | 3.6%     | 0              |
| 7         | 2             | 1       | 1   | 2      | 5/31/2016 | 4    | 3.6%     | 0.59           |
| 8         | 1             | 1       | 2   | 2      | 4/12/2016 | 4    | 3.6%     | 0.39           |
| 9         | 1             | 1       | 0   | 0      | 7/23/2016 | 3    | 2.7%     | 0              |
| 10        | 0             | 0       | 0   | 2      | 6/4/2016  | 3    | 2.7%     | 0              |
| 11        | 1             | 0       | 0   | 2      | 6/5/2016  | 3    | 2.7%     | 0.08           |
| 12        | 2             | 2       | 0   | 2      | 6/21/2016 | 3    | 2.7%     | 0              |
| 13        | 0             | 2       | 2   | 2      | 6/17/2016 | 3    | 2.7%     | 0              |
| 14        | 1             | 0       | 0   | 0      | 7/4/2016  | 2    | 1.8%     | 0              |
| 15        | 2             | 0       | 0   | 0      | 5/1/2016  | 2    | 1.8%     | 1.2            |

#### Tercile grouping rules

| Condition                | Good (0)           | Fair (1)                             | Poor (2)                           |
|--------------------------|--------------------|--------------------------------------|------------------------------------|
| <b>APREQ/MIT</b> indices | Both < 50%         | One > 50%                            | Both > 50%                         |
| CONUS WITI               | $\leq 33^{1/3} \%$ | $> 33^{1/3}$ % and $\leq 66^{2/3}$ % | > 66 <sup>2</sup> / <sub>3</sub> % |
| Local WITI               | $\leq 33^{1/3} \%$ | $> 33^{1/3}$ % and $\leq 66^{2/3}$ % | > 66 <sup>2</sup> / <sub>3</sub> % |
| Departure index          | $\leq 33^{1/3} \%$ | $> 33^{1/3}$ % and $\leq 66^{2/3}$ % | > 66 <sup>2</sup> / <sub>3</sub> % |

Σ% Occur.

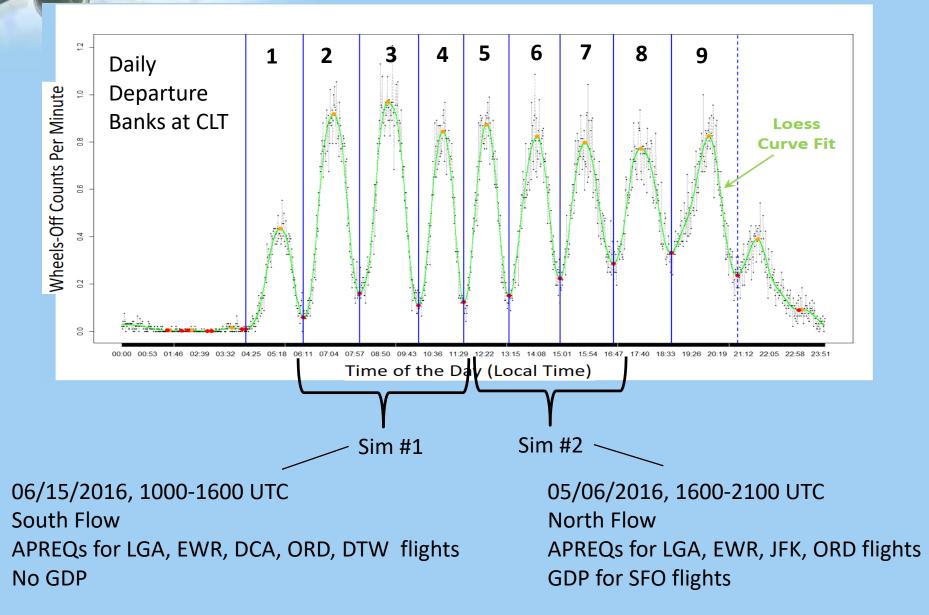
= 80%

Encompasses 80% of operational conditions for FY2015



### **Experiment Matrix**

| Airport | Simulation<br>Day | Annualization<br>Day Rank | Runway<br>Config | Simulation<br>Timeframe (UTC) | Baseline<br>Sim # | ATD-2 Sim<br># |
|---------|-------------------|---------------------------|------------------|-------------------------------|-------------------|----------------|
| CLT     | 6/15/2016         | 1                         | South            | 1000-1600                     | 1                 | 2              |
| CLT     | 6/2/2016          | 4                         | South            | 1200-1500                     | 3                 | 4              |
| CLT     | 5/17/2016         | 2                         | South            | 0900-1700                     | 5                 | 6              |
| CLT     | 6/1/2016          | 3                         | North            | 1000-1500                     | 7                 | 8              |
| CLT     | 5/6/2016          | 5                         | North            | 1600-2100                     | 9                 | 10             |
| CLT     | 5/31/2016         | 7                         | North            | 1600-2100                     | 11                | 12             |
| DFW     | 6/4/2016          | 6                         | East             | 1700-2300                     | 13                | 14             |
| DFW     | 5/12/2016         | 1                         | East             | 1000-1700                     | 15                | 16             |
| DFW     | 6/3/2016          | 2                         | West             | 1500-2100                     | 17                | 18             |
| DFW     | 7/5/2016          | 3                         | West             | 1500-2100                     | 19                | 20             |
| DFW     | 7/17/2016         | 4                         | West             | 1000-1600                     | 21                | 22             |
| DFW     | 7/28/2016         | 5                         | West             | 1000-1600                     | 23                | 24             |
| EWR     | 7/3/2016          | 5                         | South            | 0900-1600                     | 25                | 26             |
| EWR     | 7/21/2016         | 1                         | South            | 0800-1800                     | 27                | 28             |
| EWR     | 5/6/2016          | 3                         | North            | 1400-2000                     | 29                | 30             |
| EWR     | 7/29/2016         | 2                         | North            | 0900-1800                     | 31                | 32             |


Three sensitivity studies: (1) Push at SOBT, (2) Phase II benefits, (3) Phase III benefits



### RESULTS FROM HIGH-FIDELITY SIMULATIONS



### **Simulation Scenarios**



### **Efficiency:** Taxi-Out Time Savings

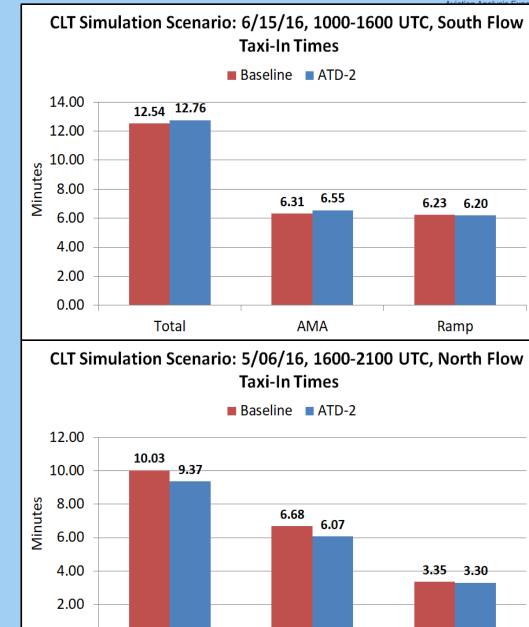


CLT Simulation Scenario: 6/15/16, 1000-1600 UTC, South Flow **Taxi-Out Times** Baseline ATD-2 8% 20.00 18.52 18.00 17.07 16.23 10% 15.00 Winte 10.00 11.0310.23 7% 6.96 6.00 **14**% 5.00 0.00 Total AMA Ramp Gate Delay + **Total Taxi-out** CLT Simulation Scenario: 5/06/16, 1600-2100 UTC, North Flow **Taxi-Out Times** Baseline ATD-2 6% 25.00 21.48 20.23 20.52 15% 20.00 17.42 15.00 Kindfe 10.97 <u>19% <sup>9.55</sup> 8.54</u> 10% 8.88 5.00 0.00 Total Gate Delay + AMA Ramp **Total Taxi-out** 

Sim #1: 06/15/2016 South Flow 1000-1600 UTC

Sim #2: 05/06/2016 North Flow 1600-2100 UTC

# Impact on Taxi-


**In Times** 

Sim #1: 06/15/2016 South Flow 1000-1600 UTC

Sim #2: 05/06/2016 North Flow 1600-2100 UTC

0.00

Total

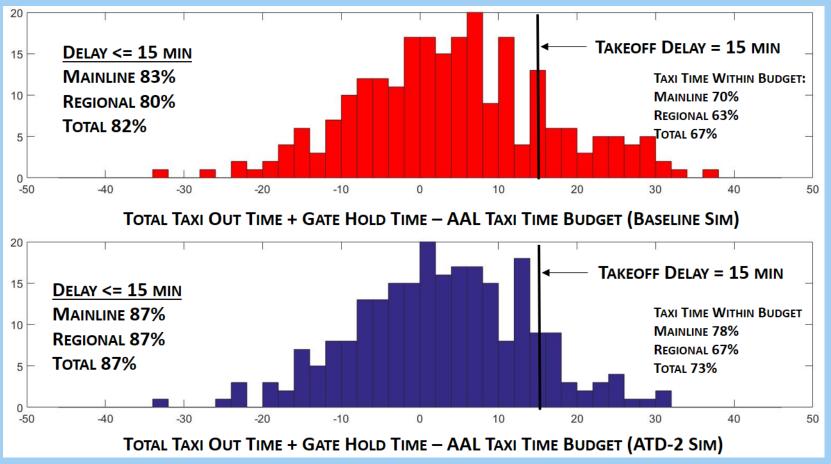


AMA

Ramp

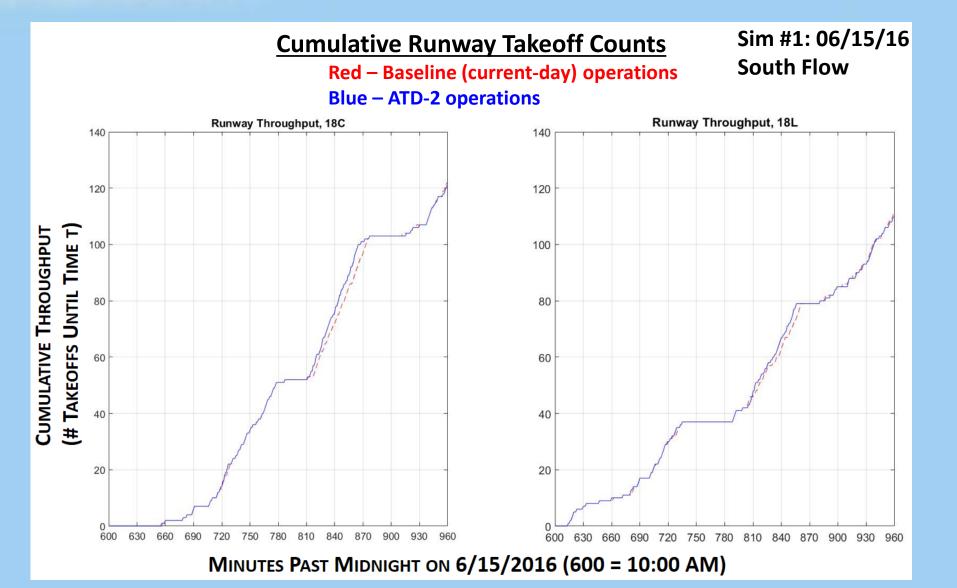


### **Impact on OFF-Time Performance**


#### Simulated Takeoff Time Difference ATD-2 Sim Flight – Baseline Sim Flight

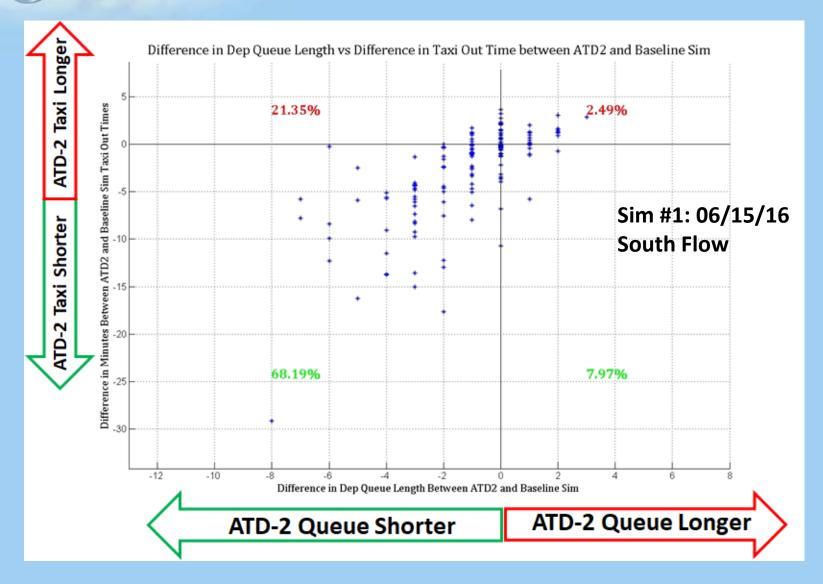





### **Impact on OFF-Time Peformance**

### Simulated Takeoff Time as compared to SOBT + AAL Taxi Budget Simulated Taxi Out Time as compared to AAL Budget



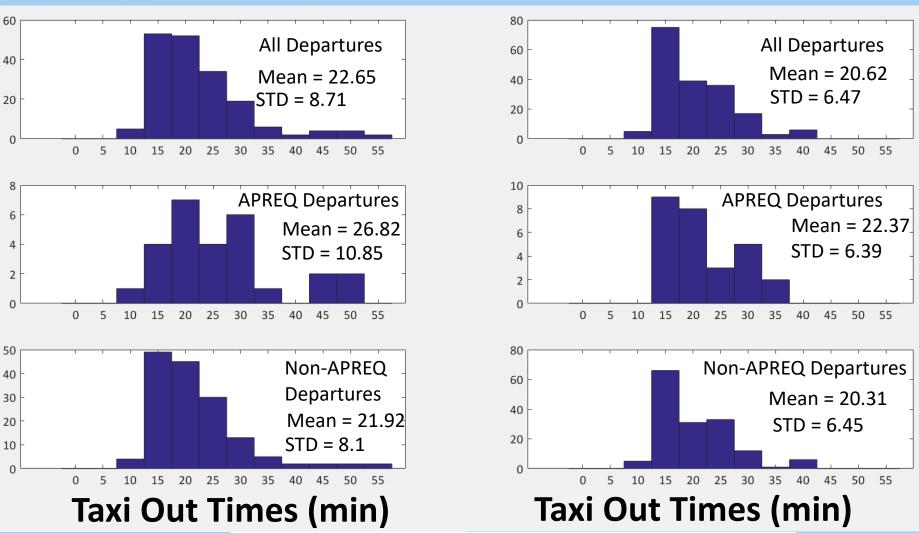



### **Impact on Airport Throughput**





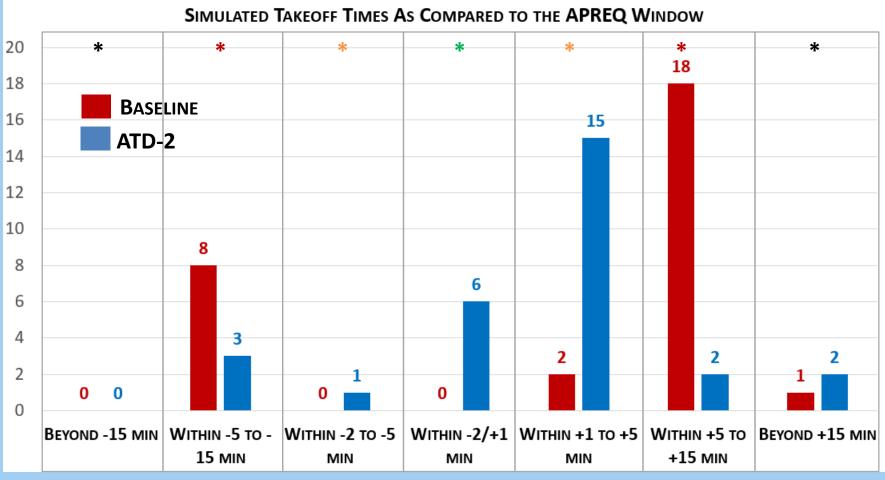
### **Benefit Mechanism: Demand Throttling**






### **Benefit Mechanism: APREQ Coordination**

#### BASELINE


ATD-2



Sim #2: 05/06/2016, North Flow, 1600-2100 UTC

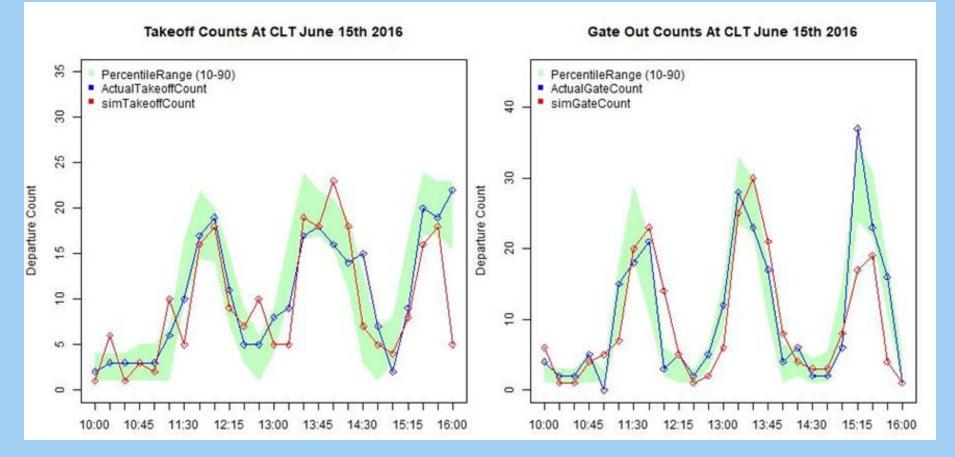


### **Benefit Mechanism: TMI Compliance**



Sim #1: 06/15/16, South Flow

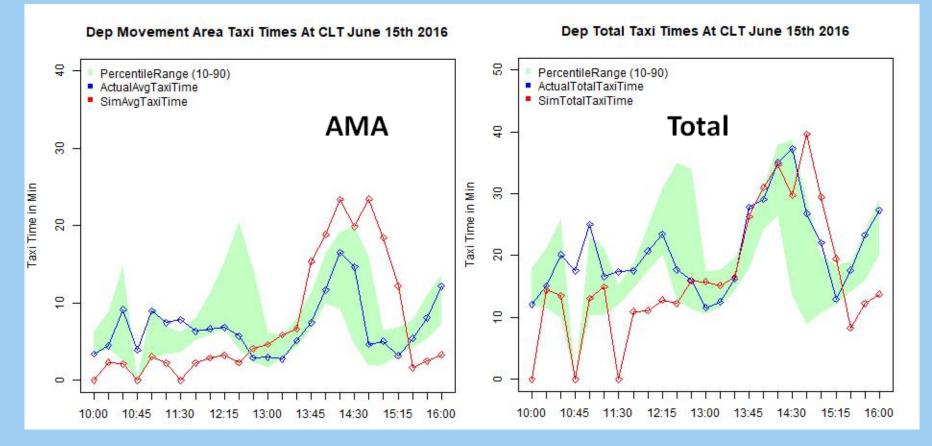



# **Model Validation**

- Two-pronged approach
  - Try to match the model start times, taxi routes, gate/runway allocations and transit times with actual operations
  - Model all the current-day procedures as well as ATD-2 benefit mechanisms accurately

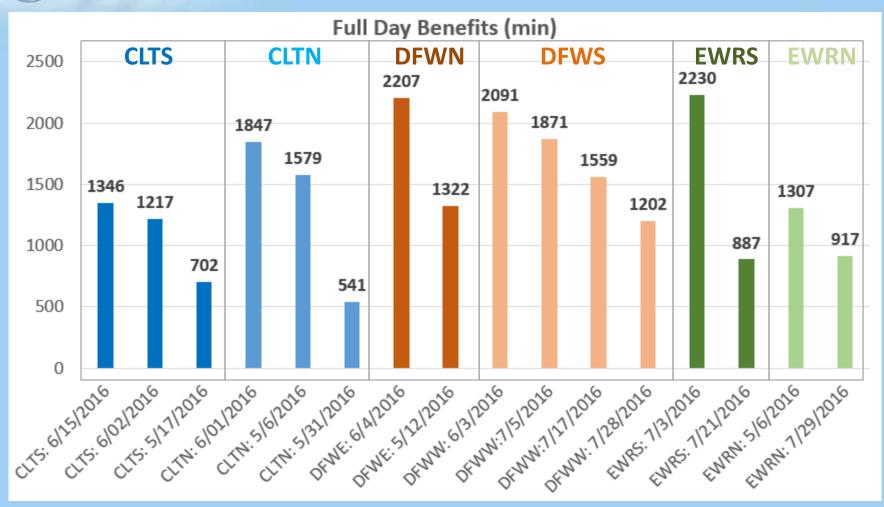


### Validation: Runway and Gate Counts


#### Sim #1: 06/15/2016, CLT South Flow, 1000-1600 UTC



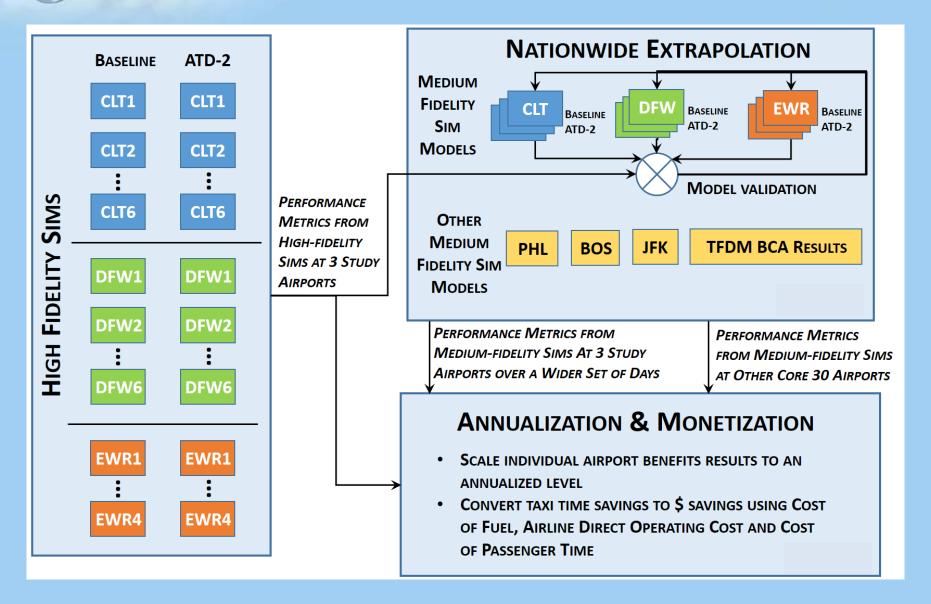



### **Validation: Taxi-Out Time**

#### Sim #1: 06/15/2016, CLT South Flow, 1000-1600 UTC






### **Summary of Taxi-Out Time Saving Benefits**



|                                                    | CLT  | DFW  | EWR  |
|----------------------------------------------------|------|------|------|
| AVERAGE PER DEPARTURE TAXI-OUT TIME SAVING (MIN) = | 1.72 | 1.89 | 2.34 |



### **Benefits Analysis & Extrapolation**





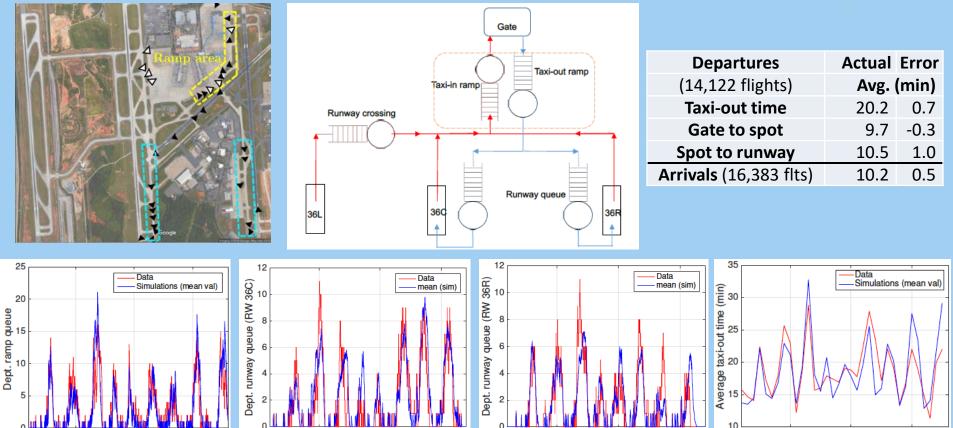
### **BENEFITS NATIONALIZATION**



### **Benefits Nationalization**

- Use mesoscopic (medium-fidelity) models of surface operations, adapted to CLT, EWR and DFW
- Compare benefits from mesoscopic models to those predicted by SOSS simulations to determine scaling factors
- Compare to N-Control or TFDM benefits estimates for LGA, PHL, BOS and other airports
- Use network delay propagation models to estimate knock-on effects

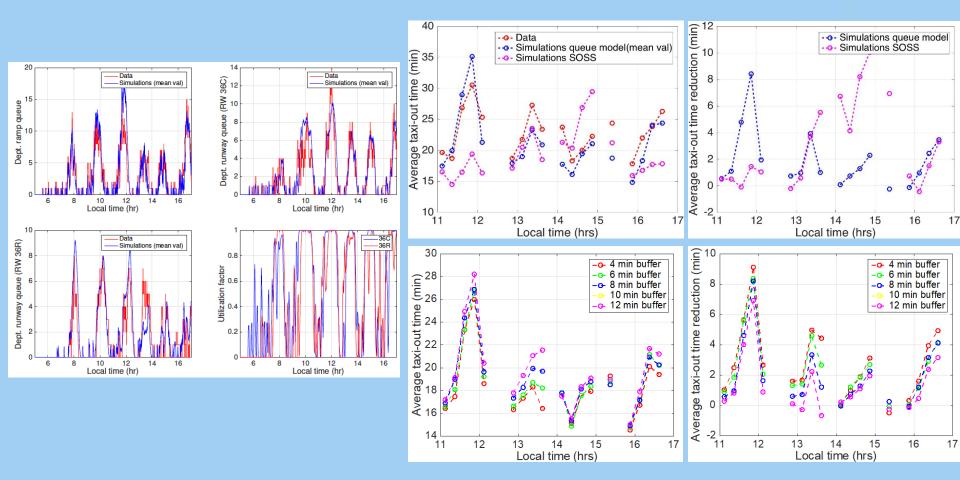



Local time (hrs)

### **Mesoscopic Models of CLT**

### Baseline (no metering)

Local time (hr) Local time (hr)


Local time (hr)





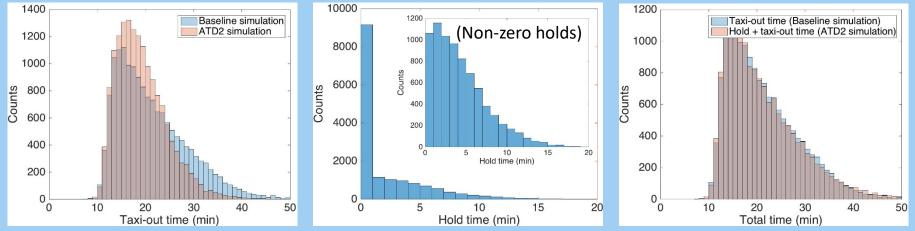
# CLT Metering Scenario: 05/06/2016

### Estimate taxi-out time reduction from ATD-2

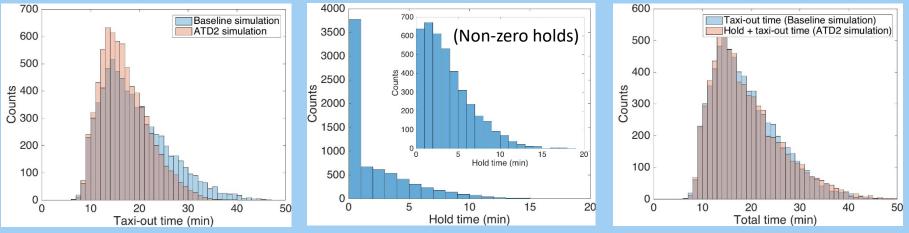




### **Impact of Excess Queue Parameter**


### North Flow (35 days; 15,718 departures)

|                                          |     |      |       |       |       |          | 3 - |                                             |
|------------------------------------------|-----|------|-------|-------|-------|----------|-----|---------------------------------------------|
| Fy                                       |     |      | naran | neter | (min) | (min)    | ø   | Average taxi-out time reduction             |
| ۲,                                       |     |      |       |       |       | -        | 2.5 | Average off-time change                     |
|                                          | 4   | 6    | 8     | 10    | 12    | change   | 2.0 |                                             |
| Mean hold time over all flights          | 4.0 | 2.9  | 2.1   | 1.5   | 1.1   | ch       | 2   | 8                                           |
| Fraction of flights held                 | 0.7 | 0.6  | 0.5   | 0.4   | 0.3   | me       | -   |                                             |
| Mean hold time of flights held           | 5.4 | 4.7  | 4.3   | 4.1   | 3.7   | off-time | 1.5 | Q                                           |
| Fraction of flights held >2 min          | 0.6 | 0.4  | 0.3   | 0.3   | 0.2   | <u> </u> |     |                                             |
| Mean hold time of flights held > 2min    | 6.6 | 6.1  | 5.7   | 5.5   | 5.2   | red      | 1   | Suitable choice of                          |
| Taxi-out reduction (baseline-metering)   | 2.8 | 2.6  | 2.1   | 1.6   | 1.2   | time     |     | excess queue parameter                      |
| Mean off-time change                     |     |      |       |       |       |          | 0.5 |                                             |
| (taxitime_meter+hold_time-taxitime_base) | 1.1 | 0.3  | 0.0   | -0.1  | -0.1  | 0        |     | 0                                           |
| Taxi-in reduction (baseline-metering)    | 0.0 | -0.1 | -0.1  | 0.1   | 0.0   | Taxi-    | 0   |                                             |
|                                          |     |      |       |       |       |          | 4   | 6 8 10 12<br>Excess queue time buffer (min) |




### **CLT Metering Impacts**

North Flow (35 days; 15,718 departures; 16,383 arrivals; excess queue: 8 min)



South Flow (20 days; 7,069 departures; 7,499 arrivals; excess queue: 5 min)



# SOSS vs. Queuing Model Simulations: CLT

#### ATD-2 benefits in terms of taxi-out time reduction Taxi-out time (in minutes)

|            | Doto       | SOSS          |               |                            | C             | Actual                         |                     |               |
|------------|------------|---------------|---------------|----------------------------|---------------|--------------------------------|---------------------|---------------|
|            | Date       | Baseline      | ATD-2         | Reduction                  | Baseline      | ATD-2                          | Reduction           | Baseline      |
| North Flow | 05/06/2016 | 20.5<br>(228) | 17.4<br>(228) | 3.1, 15.1%<br>(228)        | 21.9<br>(284) | 19.5<br>(284)                  | 2.4, 10.7%<br>(284) | 22.7<br>(284) |
|            | 05/31/2016 | 18.5<br>(222) | 17.8<br>(222) | 0.7 <i>,</i> 3.8%<br>(222) | 21.2<br>(269) | 18.1<br>(269)                  | 3.1, 14.4%<br>(269) | 23.1<br>(269) |
|            | 06/01/2016 | 22.7<br>(181) | 20.6<br>(181) | 2.1, 9%<br>(181)           | 21.1<br>(249) | 18.4<br>(249)                  | 2.7, 12.8%<br>(249) | 21.1<br>(249) |
| ith Flow   | 05/17/2016 | 20.1<br>(283) | 19.0<br>(283) | 1.1 <i>,</i> 5.7%<br>(283) | 20.3<br>(265) | 17.8<br>(265)                  | 2.5, 12.2%<br>(265) | 23.5<br>(265) |
|            | 06/02/2016 | 16.9<br>(135) | 15.9<br>(135) | 1.0, 15.8%<br>(135)        | 21.5<br>(228) | 18.3<br>(228)                  | 3.2, 14.9%<br>(228) | 20.3<br>(228) |
| Sou        | 06/15/2016 | 18.0<br>(239) | 16.2<br>(239) | 1.8, 9.8%<br>(239)         | 20.5<br>(244) | 17.6 2.9, 13.9%<br>(244) (244) |                     | 21.8<br>(244) |

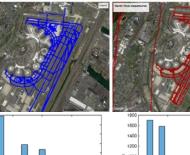
(Number of flights considered in the simulation is shown in parentheses)

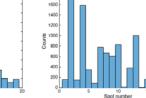


#### **Mesoscopic Models of EWR**

#### Baseline (no metering)

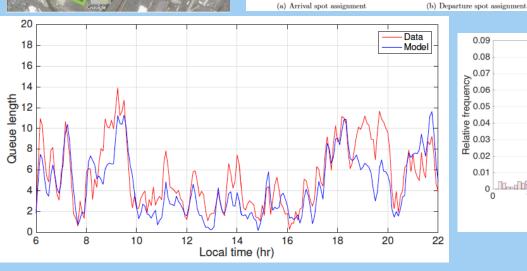
800

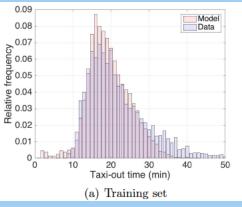

700

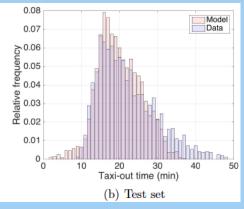

600

500

Spot assignment



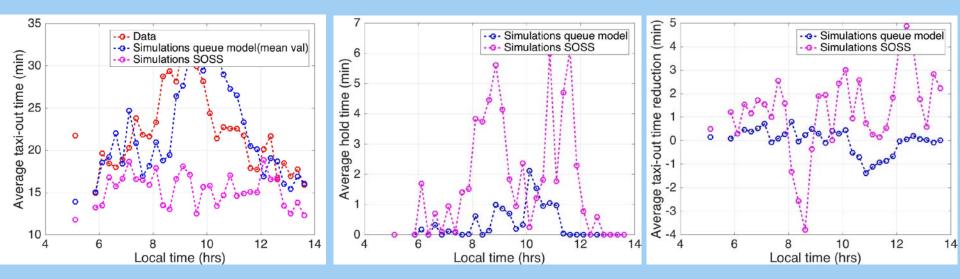




| North Flow               | Actual     | Error |  |  |  |
|--------------------------|------------|-------|--|--|--|
|                          | Avg. (min) |       |  |  |  |
| Taxi-out (9,251 flights) | 21.3       | 0.2   |  |  |  |
| Taxi-in (8,123 flights)  | 9.4        | -0.1  |  |  |  |
|                          |            |       |  |  |  |

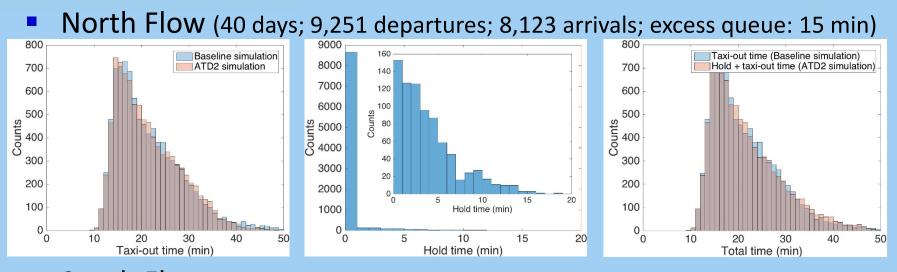
| South Flow                | Actual     | Error |  |  |
|---------------------------|------------|-------|--|--|
|                           | Avg. (min) |       |  |  |
| Taxi-out (16,349 flights) | 20.1       | 0.6   |  |  |
| Taxi-in (15,753 flights)  | 9.4        | -0.5  |  |  |



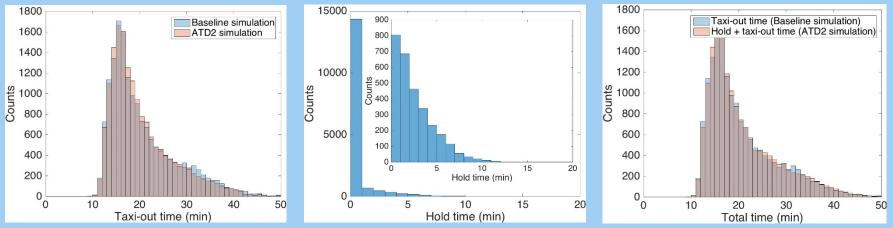








# **EWR Metering Scenario: 07/29/2016**

- Estimate taxi-out time reduction from ATD-2
- North Flow
- Excess queue parameter: 15 min






#### **EWR Metering Impacts**



South Flow (48 days; 16,349 departures; 15,753 arrivals; excess queue: 12 min)



# SOSS vs. Queuing Model Simulations: EWR

ATD-2 benefits in terms of taxi-out time reduction

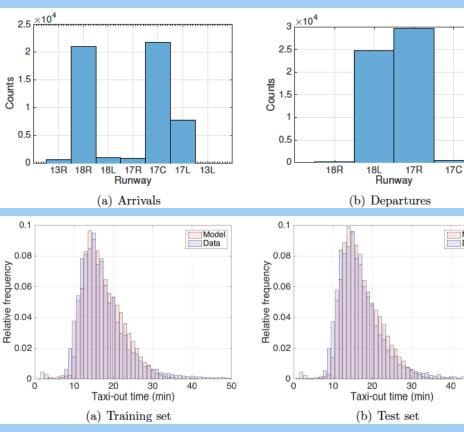
|        | Dete       | SOSS          |               |                            | C             | Actual        |                            |               |
|--------|------------|---------------|---------------|----------------------------|---------------|---------------|----------------------------|---------------|
|        | Date       | Baseline      | ATD-2         | Reduction                  | Baseline      | ATD-2         | Reduction                  | Baseline      |
| n Flow | 05/06/2016 | 15.0<br>(171) | 13.6<br>(171) | 1.4, 9.7%<br>(171)         | 19.8<br>(199) | 19.6<br>(199) | 0.2 <i>,</i> 1.3%<br>(199) | 20.6<br>(199) |
| North  | 07/29/2016 | 15.6<br>(260) | 14.5<br>(260) | 1.1, 7.2%<br>(260)         | 22.0<br>(260) | 22.0<br>(260) | 0, 0.1%<br>(260)           | 22.4<br>(260) |
| Flow   | 07/03/2016 | 20.0<br>(175) | 15.6<br>(175) | 4.4, 21.8%<br>(175)        | 15.9<br>(154) | 15.8<br>(154) | 0.1 <i>,</i> 0.6%<br>(154) | 15.9<br>(154) |
| South  | 07/21/2016 | 17.0<br>(286) | 15.9<br>(286) | 1.1 <i>,</i> 6.6%<br>(286) | 28.0<br>(292) | 25.8<br>(292) | 2.2 <i>,</i> 7.8%<br>(292) | 18.2<br>(292) |

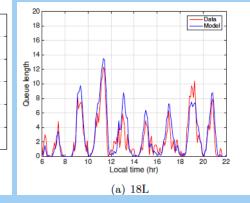
#### Taxi-out time (in minutes)

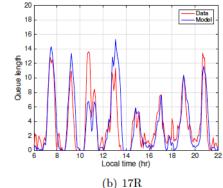
(Number of flights considered in the simulation is shown in parentheses)



#### **Mesoscopic Models of DFW**


Model

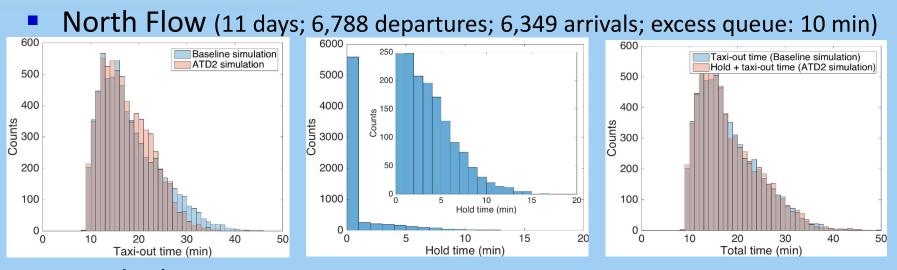

50


Data

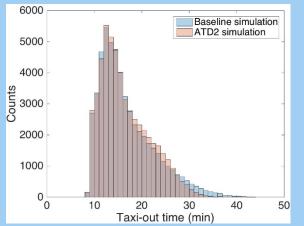
#### Baseline (no metering)

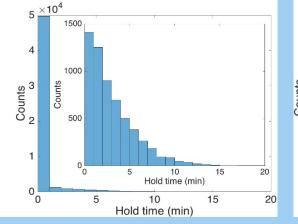
Operates in South Flow 80% of the time

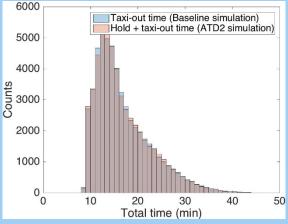








| North Flow                | Actual     | Error |  |  |  |
|---------------------------|------------|-------|--|--|--|
|                           | Avg. (min) |       |  |  |  |
| Taxi-out (6,788 flights)  | 18.7       | -0.6  |  |  |  |
| Taxi-in (6,349 flights)   | 10.1       | -0.0  |  |  |  |
|                           |            |       |  |  |  |
| South Flow                | Actual     | Error |  |  |  |
|                           | Avg. (min) |       |  |  |  |
| Taxi-out (53,513 flights) | 16.8       | 0.0   |  |  |  |
| Taxi-in (51,577 flights)  | 11.2       | 0.2   |  |  |  |





#### **DFW Metering Impacts**



South Flow (72 days; 53,513 departures; 51,577 arrivals; excess queue: 12 min)







## SOSS vs. Queuing Model Simulations: DFW

#### ATD-2 benefits in terms of taxi-out time reduction Taxi-out time (in minutes)

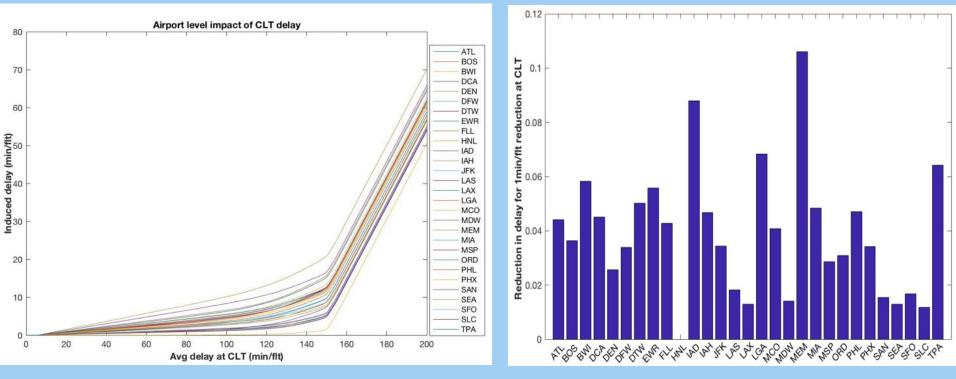
|            | Date       | SOSS          |               |                            | C             | Actual        |                            |               |
|------------|------------|---------------|---------------|----------------------------|---------------|---------------|----------------------------|---------------|
|            | Date       | Baseline      | ATD-2         | Reduction                  | Baseline      | ATD-2         | Reduction                  | Baseline      |
| Flow       | 05/12/2016 | 22.3<br>(302) | 20.5<br>(302) | 1.8, 8.2%<br>(302)         | 19.4<br>(305) | 18.3<br>(305) | 1.1 <i>,</i> 5.6%<br>(305) | 20.0<br>(305) |
| North      | 06/04/2016 | 20.9<br>(297) | 18.0<br>(297) | 2.9, 14.0%<br>(297)        | 16.5<br>(327) | 16.3<br>(327) | ,                          |               |
| South Flow | 06/03/2016 | 19.6<br>(382) | 17.9<br>(382) | 1.7 <i>,</i> 8.4%<br>(382) | 16.0<br>(386) | 15.9<br>(386) | 0.1 <i>,</i> 0.6%<br>(386) | 16.2<br>(386) |
|            | 07/05/2016 | 19.6<br>(350) | 17.6<br>(350) | 2.0, 10.6%<br>(350)        | 16.3<br>(337) | 16.0<br>(337) | 0.3 <i>,</i> 1.4%<br>(337) | 22.5<br>(337) |
|            | 07/17/2016 | 18.8<br>(254) | 16.8<br>(254) | 2.0, 10.7%<br>(254)        | 19.2<br>(259) | 18.3<br>(259) | 0.9 <i>,</i> 4.6%<br>(259) | 16.6<br>(259) |
|            | 07/28/2016 | 17.8<br>(254) | 16.7<br>(254) | 1.1, 6.4%<br>(254)         | 16.0<br>(266) | 15.9<br>(266) | 0.1, 0.5%<br>(266)         | 19.6<br>(266) |

(Number of flights considered in the simulation is shown in parentheses)

# Summary of Taxi-out Time Reduction Benefits

|     |                  |        |                 |                 |                  |       |                  |           |             |           | %    | taxi-ou<br>reduc |      |     | Scaling |        |
|-----|------------------|--------|-----------------|-----------------|------------------|-------|------------------|-----------|-------------|-----------|------|------------------|------|-----|---------|--------|
|     |                  | Excess |                 | # deps          | Total            | Avg.  | Estim.           |           |             | Date      |      | ieue<br>odel     | SO   |     | factor  | Median |
|     | Config.          | queue  | taxi-out        | in sims         | taxi-out         | daily | daily            |           |             | 5/06/2016 | 10.7 |                  | 15.1 |     | 1.4     |        |
|     |                  | (min)  | time<br>savings |                 | time<br>savings  | deps  | taxi-out<br>time |           | N<br>Flow   | 5/31/2016 | 14.4 |                  | 3.8  |     | 0.3     |        |
|     |                  |        | (min)           |                 | (min)            |       | savings          |           | FIOW        | 6/01/2016 | 12.8 | 12.4             | 9.0  | 7 4 | 0.7     | 0.6    |
| 017 |                  |        | 2.1             | 45.740          | 22.000           |       | (hours)          | CLT       | S           | 5/17/2016 | 12.2 | 13.4             | 5.7  | 7.4 | 0.5     |        |
| CLT | N Flow<br>S Flow | 8<br>5 | 2.1<br>2.0      | 15,718<br>7,069 | 33,008<br>14,138 | 707   | 24.4             |           | Flow        | 6/02/2016 | 14.9 |                  | 5.8  |     | 0.4     |        |
| EWR | N Flow           | 8      | 1.2             | 9,251           | 14,138           | 645   |                  |           |             | 6/15/2016 | 13.9 |                  | 9.8  |     | 0.7     |        |
|     | S Flow           | 12     | 0.4             | 7,069           | 925              | 615   | 7.6              |           | N           | 5/12/2016 | 5.6  |                  | 8.2  |     | 1.5     |        |
| DFW | N Flow           | 10     | 0.8             | 6,788           | 5,430            | 969   | 7.2              |           | Flow        | 6/04/2016 | 1.3  |                  | 14.0 |     | 10.5    |        |
|     | S Flow           | 12     | 0.4             | 53,513          | 21,405           |       |                  | -         |             | 6/03/2016 | 0.6  |                  | 8.4  |     | 13.1    | 6.0    |
|     |                  |        |                 |                 |                  |       |                  | DFW       | C           | 7/05/2016 | 1.4  | 1.4              | 10.6 | 9.5 | 7.7     | 6.8    |
|     |                  |        |                 |                 |                  |       |                  |           | S<br>Flow   | 7/17/2016 | 4.6  |                  | 10.7 |     | 2.3     |        |
|     |                  |        |                 |                 |                  |       |                  |           | TIOW        |           |      |                  |      |     |         |        |
|     |                  |        |                 |                 |                  |       |                  |           |             | 7/28/2016 | 0.5  |                  | 6.4  |     | 11.7    |        |
|     |                  |        |                 |                 |                  |       |                  |           | N           |           | 1.3  |                  | 9.7  |     | 7.5     |        |
|     |                  |        |                 |                 |                  |       |                  | EWR       | Flow        | 7/29/2016 | 0.1  | 1.0              | 7.2  | 8.5 | 91.9    | 8.5    |
|     |                  |        |                 |                 |                  |       |                  |           |             | 7/03/2016 | 0.6  | 1.0              | 21.8 | 0.5 | 34.9    | 0.0    |
|     |                  |        |                 |                 |                  |       |                  |           | Flow        | 7/21/2016 | 7.8  |                  | 6.6  |     | 0.8     |        |
|     |                  |        |                 |                 |                  |       | Othe             | r airport | ts (Median) | 5         | 5.1  | 8.               | 7    | 1.9 | 1.9     |        |




## **Extrapolation to Core 30 Airports**

| Apt. | % TFDM   | Normalized           | [SB10] &   | Med-fidelity | SOSS    | Extrapolation | % extrapolated |
|------|----------|----------------------|------------|--------------|---------|---------------|----------------|
|      | benefits | <b>TFDM benefits</b> | [Fornes15] | benefits     | scaling | factor        | benefit        |
| ATL  | 10.9     | 1.3                  |            |              | 1.9     | 2.6           | 6.7%           |
| ORD  | 10.1     | 1.2                  |            |              | 1.9     | 2.4           | 6.2%           |
| JFK  | 10.0     | 1.2                  | 1.5        |              | 1.9     | 2.9           | 7.5%           |
| EWR  | 8.1      | 1.0                  | 1.0        | 1.0          | 8.5     | 8.5           | 22.3%          |
| LGA  | 7.5      | 0.9                  | 0.8        |              | 1.9     | 1.6           | 4.1%           |
| PHL  | 6.4      | 0.8                  | 1.4        |              | 1.9     | 2.7           | 7.0%           |
| DEN  | 4.7      | 0.6                  |            |              | 1.9     | 1.1           | 2.9%           |
| CLT  | 4.0      | 0.5                  |            | 3.2          | 0.6     | 1.8           | 4.6%           |
| DTW  | 3.7      | 0.5                  |            |              | 1.9     | 0.9           | 2.2%           |
| MSP  | 3.5      | 0.4                  |            |              | 1.9     | 0.8           | 2.1%           |
| IAH  | 3.1      | 0.4                  |            |              | 1.9     | 0.7           | 1.9%           |
| DFW  | 3.1      | 0.4                  |            | 0.9          | 6.8     | 6.4           | 16.9%          |
| BOS  | 3.1      | 0.4                  | 0.4        |              | 1.9     | 0.8           | 2.0%           |
| SFO  | 2.9      | 0.4                  |            |              | 1.9     | 0.7           | 1.8%           |
| DCA  | 2.6      | 0.3                  |            |              | 1.9     | 0.6           | 1.6%           |
| LAX  | 2.6      | 0.3                  |            |              | 1.9     | 0.6           | 1.6%           |
| PHX  | 2.5      | 0.3                  |            |              | 1.9     | 0.6           | 1.5%           |
| MIA  | 1.7      | 0.2                  |            |              | 1.9     | 0.4           | 1.0%           |
| LAS  | 1.6      | 0.2                  |            |              | 1.9     | 0.4           | 1.0%           |
| SEA  | 1.4      | 0.2                  |            |              | 1.9     | 0.3           | 0.9%           |
| IAD  | 1.3      | 0.2                  |            |              | 1.9     | 0.3           | 0.8%           |
| SLC  | 1.2      | 0.1                  |            |              | 1.9     | 0.3           | 0.7%           |
| BWI  | 1.1      | 0.1                  |            |              | 1.9     | 0.3           | 0.7%           |
| MDW  | 0.9      | 0.1                  |            |              | 1.9     | 0.2           | 0.6%           |
| FLL  | 0.9      | 0.1                  |            |              | 1.9     | 0.2           | 0.5%           |
| МСО  | 0.8      | 0.1                  |            |              | 1.9     | 0.2           | 0.5%           |
| SAN  | 0.7      | 0.1                  |            |              | 1.9     | 0.2           | 0.4%           |



#### **Decrease in Propagated Delays**

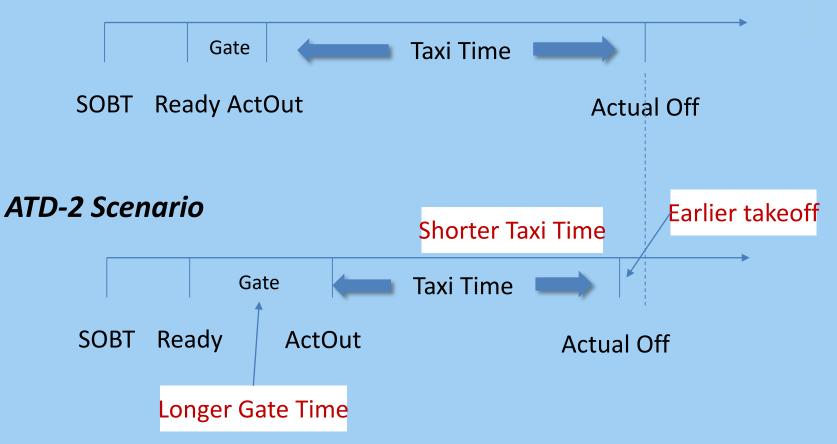
- By deploying ATD-2 at an airport, the departure delays at that airport are likely to decrease
- 2<sup>nd</sup> order effects: Decrease in departure delays will imply less propagation of delays to other airports in the system





#### BENEFITS MONETIZATION AND ANNUALIZATION




## Mechanisms

- Two primary benefits
  - 1) Increased time at gate
    - a) Fuel Savings for reduced taxi time
  - 2) Earlier off time (increase in thru-put)
    - a) Airline Direct Operating Costs (ADOC)
    - b) Passenger Value of Time (PVT)
- Secondary benefits
  - 1) Improved compliance with EDCT/APREQs
    - a) Captured due to earlier off time impact
  - 2) Emissions due to reduced fuel burn



### **Benefit Timeline**

#### **Baseline Scenario**



Of note is that in some cases the off time could be greater for the ATD-2 scenario due to error (e.g., excess gate hold)



## **Benefits Inputs**

- Flight Level Data Provided (Departures only)
  - Scheduled Off Block Time (SOBT)
  - Ready Off Block Time (Ready)
  - Actual Off Block Time (ActOut)
    - Generally in the baseline scenario, Ready = ActOut
  - Runway Off Time (ActOff)
  - Numerous other fields not used in calculation
- Summary level data for arrivals
  - Average Taxi In time



# **Benefits Calculations**

Due to potential shifts in Out and Off times, need to avoid double counting:

Define:  $F_r$  as \$/fuel burn rate during taxi

- A as ADOC/min
- *P* as PVT/min

C<sub>i</sub> as Cost of surface trajectory

 $C_{i} = \{\min(t_{off}^{0}, t_{off}^{i}) - t_{out}^{i}\} * F_{r} + (t_{off}^{i} - t_{off}^{o}) * (A + P)$ 

The Benefits of the  $\iota^{th}$  flight are then

$$B_i = C_0 - C_i$$



#### **Economic Values**

- Baseline values are provided by the Investment Analysis and Planning (IP&A) directorate of the FAA:
  - Average Fuel burn on the surface
  - Average ADOC (Cargo, Pax, Air Taxi, and GA)
  - PVT (policy value from DoT guidance)
  - Average passenger load/flight

#### Value per hour as used in the TFDM analysis

| Airport | Fuel (\$/hr) | PVT (\$/hr) | ADOC (\$/Hr) |
|---------|--------------|-------------|--------------|
| CLT     | \$605.28     | \$3,844.69  | \$1,748.68   |
| DFW     | \$645.45     | \$4,318.48  | \$1,865.14   |
| EWR     | \$638.15     | \$4,220.87  | \$1,844.03   |



# **Extrapolation to Full Year**

- Simulation Date selection is based on frequency of occurrence of "similar" days
  - This will be used as a first-order approximation methodology
- Second-Order variable will be taxi-out delay as highly correlated with the dominant benefit mechanisms
- Benefits:
  - 1 June is similar to 11.6% of the days compared days (112). Benefits for all similar days is thus 112\*11.6%\*Benefits(1 Jun)
  - Combined with the other days and scaled to 366 operational days
  - Alternate methodology would be to use the modeled dates and extrapolate using taxi-out delay
- These results would then be extended to the NAS using methods described earlier



#### **Cost Analysis**

- Examine major cost drivers within the TFDM program
- Apply risk reduction to impact the "high confidence" results
  - Reduce estimation parameter variance
  - Assume a small decrease in the point estimate due to NASA ATD-2 work
- Risk parameter adjustments
  - Reduced the variance parameter within a triangular distribution by 5%
  - Mode decreased by 2.5%



## **Cost Risk Parameters**

- Major Cost Drivers
  - Prime Mission Product Application Software
  - Prime Mission Product Platform Integration
  - Prime Mission Product Management
- Base risk elements
  - Triangular: min/mode/max
- SME based estimate of impact
  - Mode-Min/Max-mode reduced by 5%
  - Mode reduced by 2.5%
- Only impacts F&E (Capital) budget items. Operations are assumed to be unaffected



#### **NAS-wide Cost Results**

- Overall impact was to reduce cost by 3.5%
- Costs dropped from \$1.3 B (RATY\$) to \$1.25 B a savings of \$50 M (life-cycle)
- We consider this a conservative estimate
  - ATD-2 will help with development costs
  - Define interfaces
  - Provide direction based on proto-types



#### **BENEFITS COSTS ANALYSIS**



# **Economic Analysis**

- Apply changes to cost & benefits to the base TFDM B/C ratio and NPV metrics
- Methodology
  - (B/C)<sub>TFDM</sub> =1.03, gets adjusted via
    - (B/C)<sub>ATD2</sub>=(B<sub>TFDM</sub>\*B<sub>ATD2</sub>%)/(C<sub>TFDM</sub>\*C<sub>ATD2</sub>%) is the adjusted 20<sup>th</sup> percentile Benefits to Cost ratio
  - No change in schedule assumed
  - B<sub>ATD2</sub>%=1.77; (B/C)<sub>ATD2</sub> ATD2%=0.965
  - $-(B/C)_{ATD2} = 1.77/0.965*1.03 = 1.89$
- NPV is calculated similarly and changes from

- \$17M to nearly \$500 M (PV\$)

#### Large improvement in ROI metrics



#### CONCLUSIONS, LESSONS LEARNED, AND FUTURE WORK

# Conclusions



- ATD-2 offers significant taxi-out time savings benefits at congested airports in the NAS, without having negative impact on taxi-in times, OFF time performance and airport throughput
- Annual total of 3.5 million minutes of reduced taxi-time and nearly 400K minutes of early off times (delay savings) at CLT, EWR, and DFW
- \$2.6 Billion in monetary benefits nationwide due to significant reduction in delay as well as gate hold time
- ATD-2 benefits significantly outweigh the implementation costs, NPV increased from \$17M to \$500M (PV\$)
- Incorporation of ATD-2 into the FAA's TFDM system significantly improves the B/C ratio of the TFDM program from 1.03 to 1.89



#### **Lessons Learned**

- ATD-2 benefits can be enhanced by making adjustments to scheduling algorithms, prediction methods, and implementation procedures
  - ERUT estimation accuracy hinders ATD-2 benefits at EWR and DFW
  - Taxi-out time uncertainty results in inefficient computation of TOBTs
  - Certain runway configurations present unique challenges
  - Prioritization rules result in sequence jumps when a departure flight transitions from "Uncertain" to "Planned" status and from "Planned" to "Ready" status
  - New York TRACON needs a multi-airport, hierarchical departure scheduling solution



## **Future Work Ideas**

- Simulation based assessments to evaluate ATD-2 enhancement alternatives for
  - ATD-2 spacing algorithms, especially for parallel dependent runways
  - Managing uncertainty in taxi-out times
  - Prioritization rules changes
  - Hierarchical multi-airport scheduling
- Operational data analysis (Benefits computation from operational data)
  - Pre- versus post- implementation comparison for "similar" time-periods
  - Measure other benefits, e.g., ON-time performance, NAS network predictability, throughput
- Simulation based analysis of extending ATD-2 and TBFM type scheduling to multiple Centers and metroplexes, e.g., Northeast Corridor
- Leverage analysis framework for assessing technologies in other NASA research areas
  - Integrated Demand Management (IDM)
  - Increasing Diverse Operations (IDO)



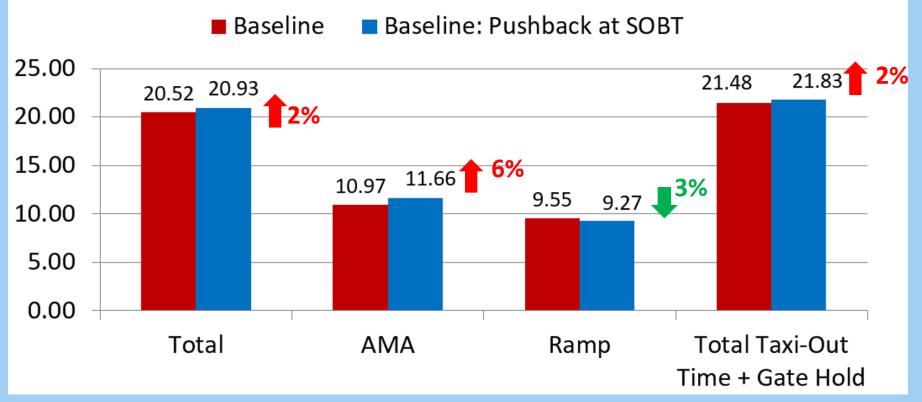
# Acknowledgements

- Thanks to Rich Coppenbarger and the rest of the NASA ATD-2 team for support of this research work
- Thanks to the NASA ATD-2 research group and ATD-2 fast time analytics research group for their feedback and support throughout the project
- Thanks to Eric Chevalley, Todd Callantine, and Al Capps for sharing airspace configuration data and information on airspace procedures





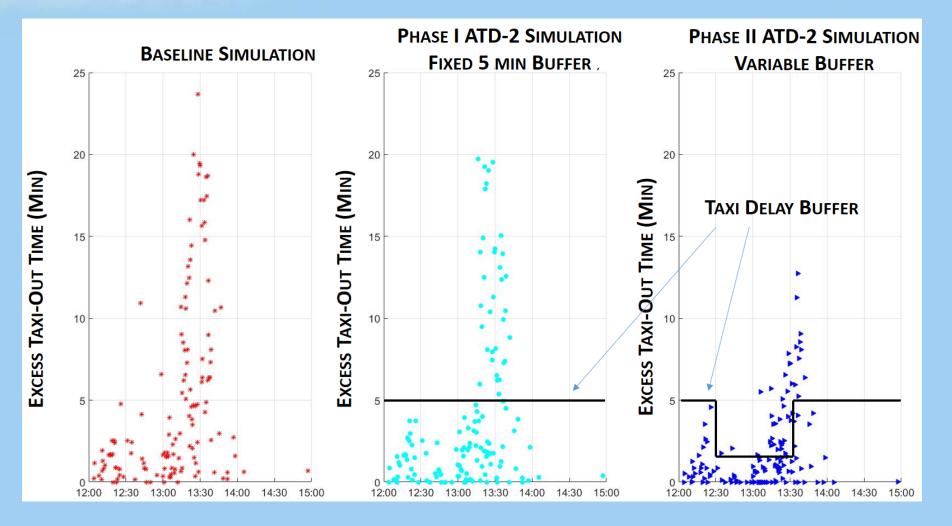
## QUESTIONS




# **Sensitivity Tests**

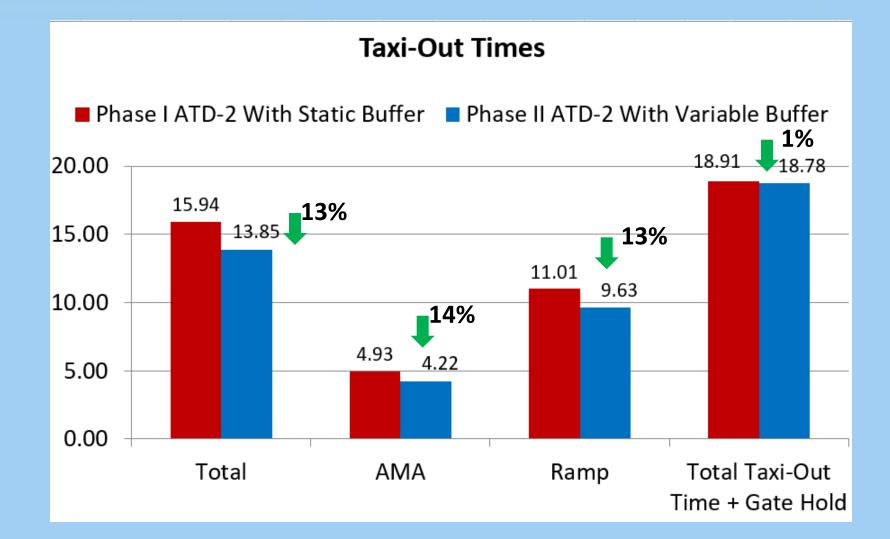
- 1. Assess the effects of departure flights pushing back at exactly their Scheduled Off Block Times
- 2. Assess the benefits of adding Phase II functionality: Strategic Scheduler for optimum queue delay buffer parameter setting, and
- 3. Leverage a past simulation study to assess the benefits of adding Phase III Integrated Airspace Scheduling capability, focused on the New York airspace




#### **Taxi-Out Times**

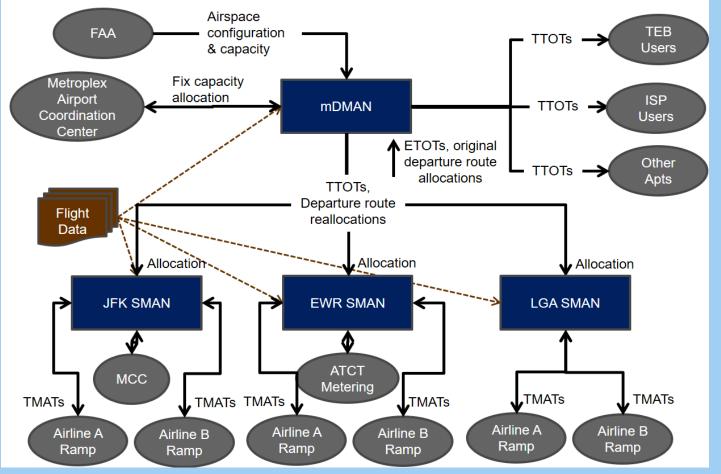


All departure flights pushing back exactly at their SOBTs increased the taxiout times by around 2%, with 6% increase in AMA taxi-out times




#### Sensitivity Test 2: ATD-2 Phase II Benefits



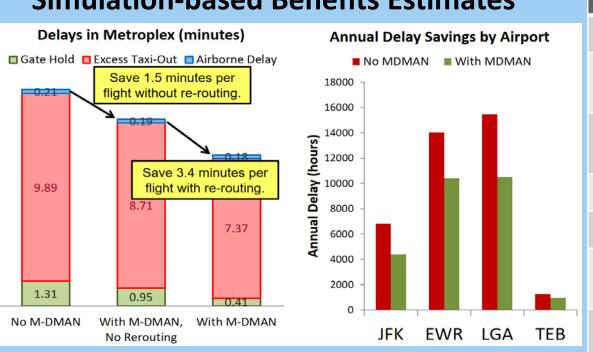



#### Sensitivity Test 2: ATD-2 Phase II Benefits



# Sensitivity Test 3: Phase III Airspace

**Hierarchical Scheduling Concept of Operations\*** 




\*Leverages past study: [SL14] Saraf, A., Levy, B., Stroiney, S., Griffin, K., "Metroplex Departure Management," Final presentation for Saab Sensis R&D project.

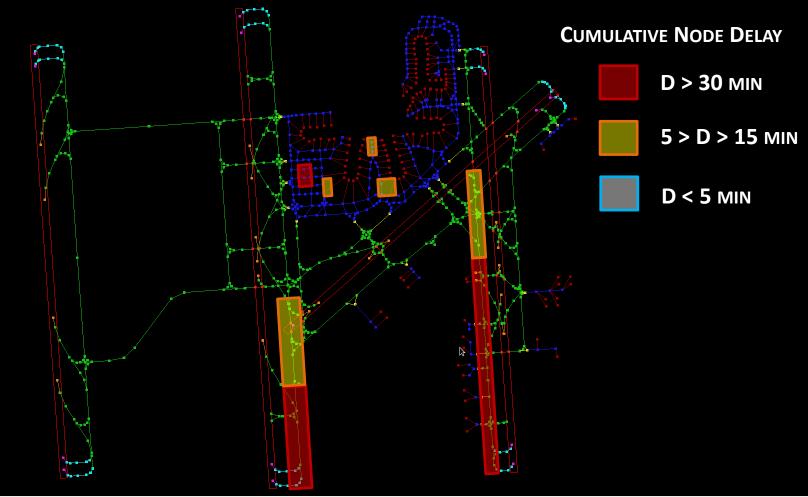


## Sensitivity Test 3: Phase III Airspace **Scheduling Benefits\***

#### **Annual Benefits**



#### Simulation-based Benefits Estimates


\*Leverages past study: [SL14] Saraf, A., Levy, B., Stroiney, S., Griffin, K., "Metroplex Departure Management," Final presentation for Saab Sensis R&D project.

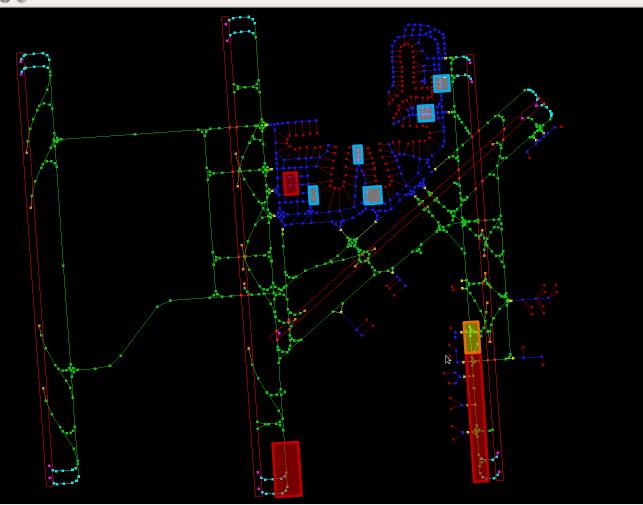
|   | Quantity                    | Savings               |  |  |  |  |
|---|-----------------------------|-----------------------|--|--|--|--|
|   | Taxi-Out Duration           | 8,300 hours           |  |  |  |  |
|   | Total Delay in<br>Metroplex | 11,400 hours          |  |  |  |  |
|   | Fuel                        | 1.4 million gallons   |  |  |  |  |
|   | Fuel Cost                   | \$4.2 million         |  |  |  |  |
|   | Operating Costs             | \$26 million          |  |  |  |  |
|   | CO <sub>2</sub> Emissions   | 13,500 metric<br>tons |  |  |  |  |
| ٦ | Passenger Time              | 34,000<br>person-days |  |  |  |  |
|   | Passenger Time @<br>\$30/hr | \$ 25 million         |  |  |  |  |
|   | Passenger Time NAS-<br>wide | \$ 36 million         |  |  |  |  |
|   |                             |                       |  |  |  |  |



#### Top Delay Locations (Baseline North Flow)

File Configuration View Preferences Tools Help Mode




CLT3, south\_flow1, /scenario\_data\_official/CLT\_20160602\_0110000\_012\_15\_south\_flow1\_Scenario\_data.list\_data\_pushTimes

Simulation time and FTG info Mouse Position: ( 578.76, -1697.27)



# Top Delay Locations (ATD-2 North Flow)

File Configuration View Preferences Tools Help Mode



CLT3, south\_flow1, /scenario\_data\_official/CLT\_20160602\_0110000\_012\_15\_south\_flow1\_Scenario\_data.list\_data\_pushTimes

Simulation time and FTG info Mouse Position: (578.76, -1697.27)



# Top Delay Locations (Baseline South Flow)

File Configuration View Preferences Tools Help Mode




CLT3, south\_flow1, /scenario\_data\_official/CLT\_20160602\_0110000\_012\_15\_south\_flow1\_Scenario\_data.list\_data\_pushTimes

Simulation time and FTG info Mouse Position: ( 578.76, -1697.27)



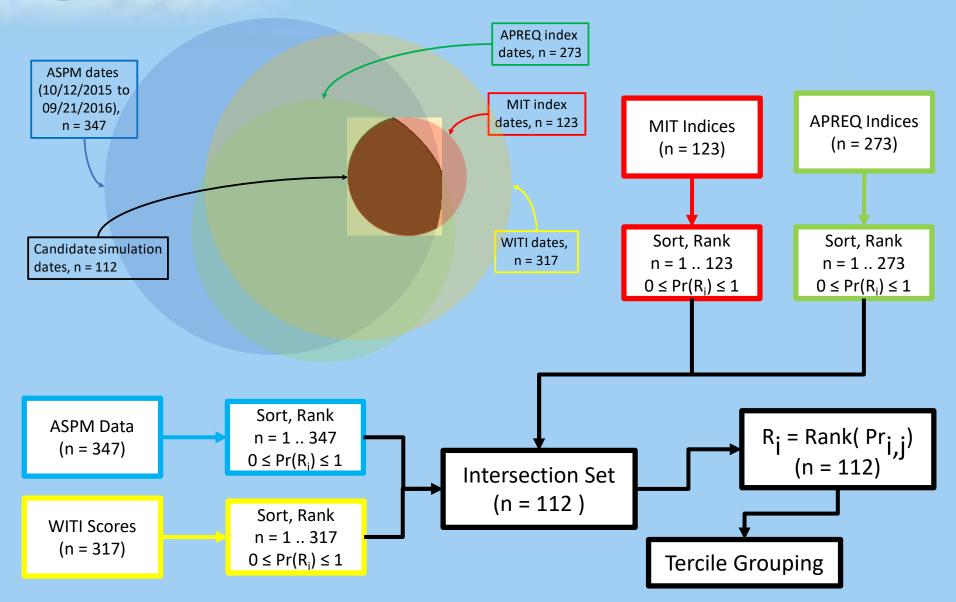
# Top Delay Locations (ATD-2 South Flow)

File Configuration View Preferences Tools Help Mode



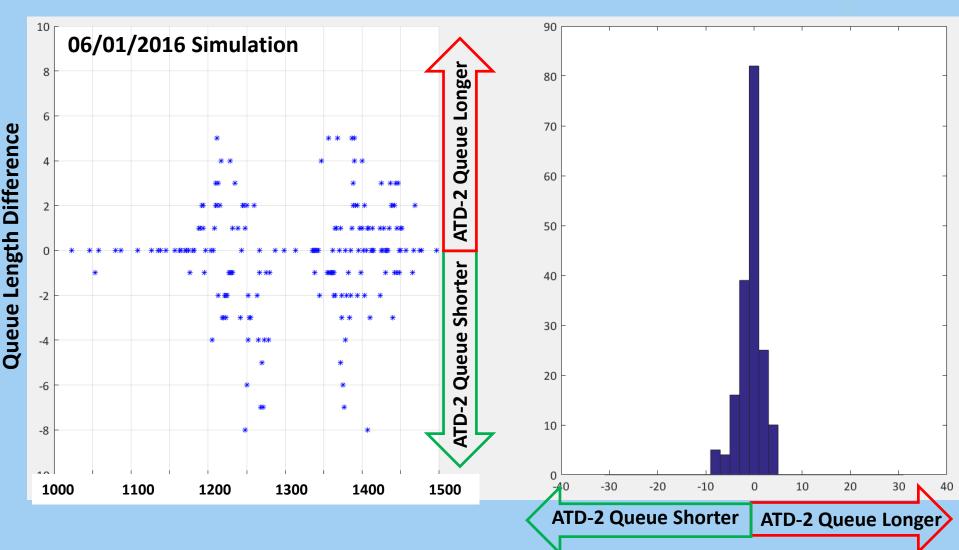
CLT3, south\_flow1, /scenario\_data\_official/CLT\_20160602\_0110000\_012\_15\_south\_flow1\_Scenario\_data.list\_data\_pushTimes

Simulation time and FTG info Mouse Position: ( 578.76, -1697.27)



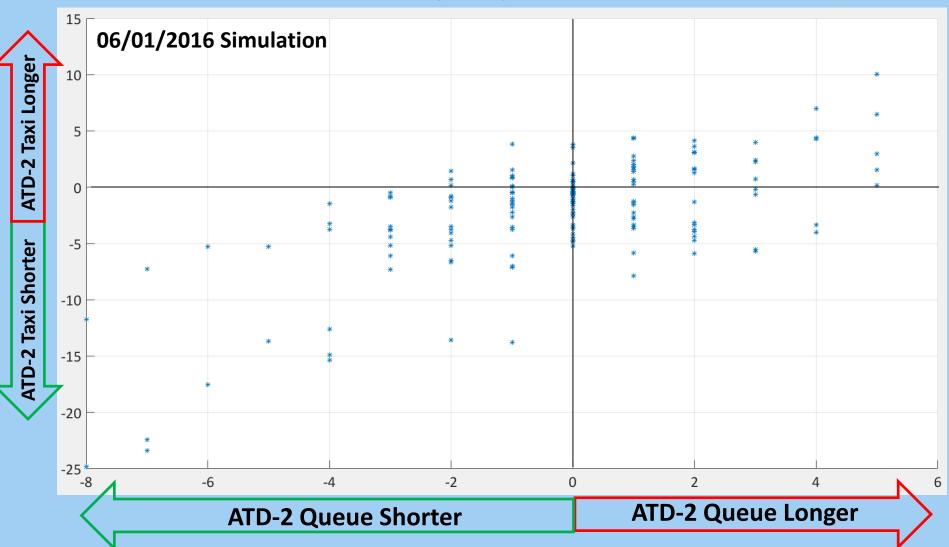

# **SOSS Problems**

- Gridlock multiple gridlock situation types
- SOSS not holding flights on departure runway queue nodes and departure node
- SOSS not able to change taxi route and hold flight at gate, at the same time
- SOSS misses sending certain delayed flights' information to the scheduler at consecutive scheduler calls, although the flights are active (i.e., at gate)
- Strange behavior by certain arrival flights they just stop at a node and don't move (even when there is no active STR)
- Cancelling an STR by using -2 doesn't always work




# Venn Diagram of Simulation Data




# Departure Queue Length Comparison

Simulated Departure Queue Length Experienced Difference ATD-2 Sim Flight – Baseline Sim Flight

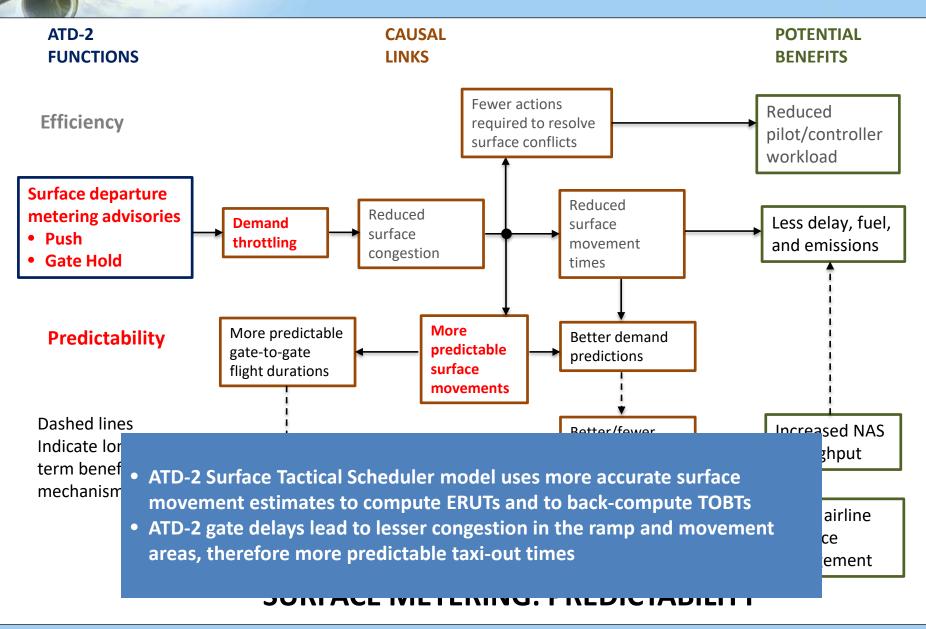


# Taxi Out Time VS Departure Queue Length

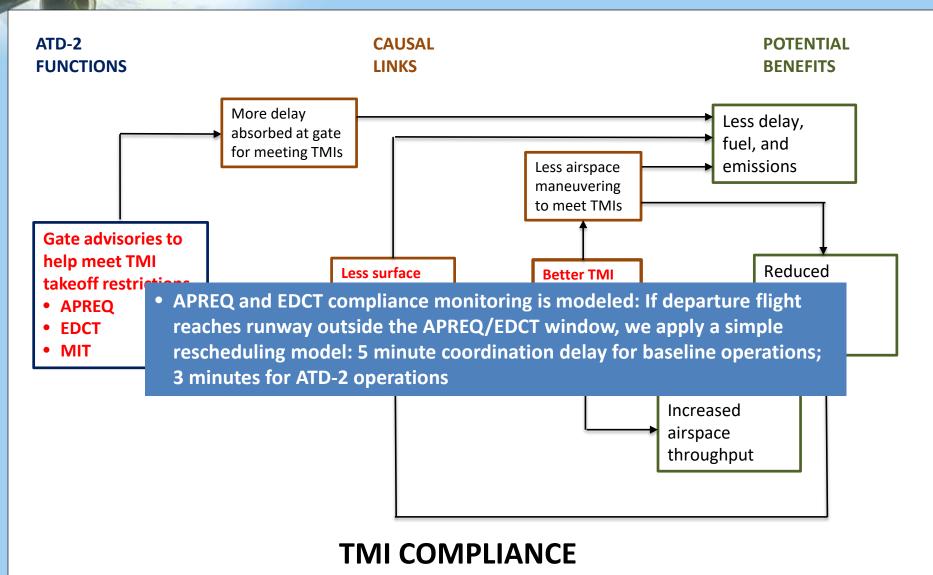
#### Taxi Out Time Difference as a function of Departure Queue Length Experienced Difference






### **Forecast – Future Years**

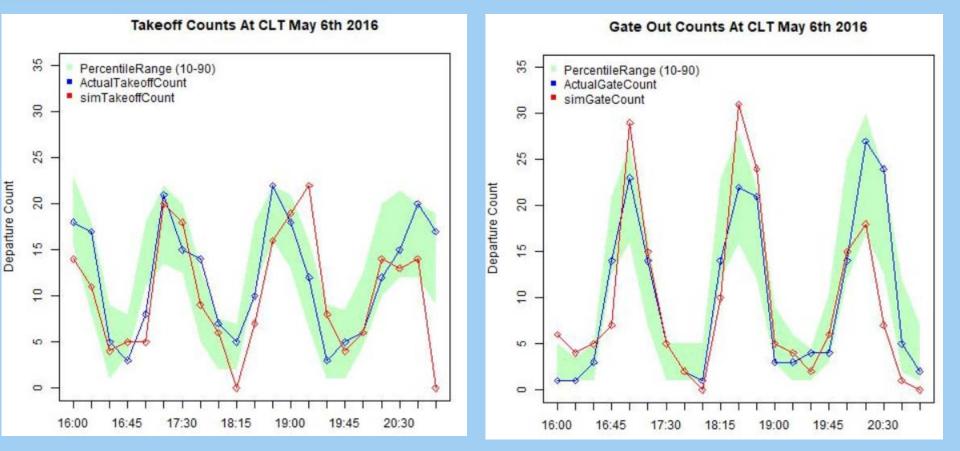
- FAA Policy Office (APO)
  - Provides forecast for future demand at annual airport level
    - AJR (SysOps) provides a flight level forecast if needed
  - Due to unknown changes in capacity (e.g., new runways, NextGen, etc) growth is generally capped at 10 years by IP&A Policy
  - Apply simple queuing theory algorithm


$$Delay \cong Delay_{Base} * \frac{(1-\frac{o}{\mu})}{(1-\frac{\sigma_2}{\mu_2})}$$
 where

 $\sigma$  is the demand and  $\mu$  is the capacity. Capacity generally is assumed constant, or adjusted only if "known" changes

# Modeling of ATD-2 Benefit Mechanisms

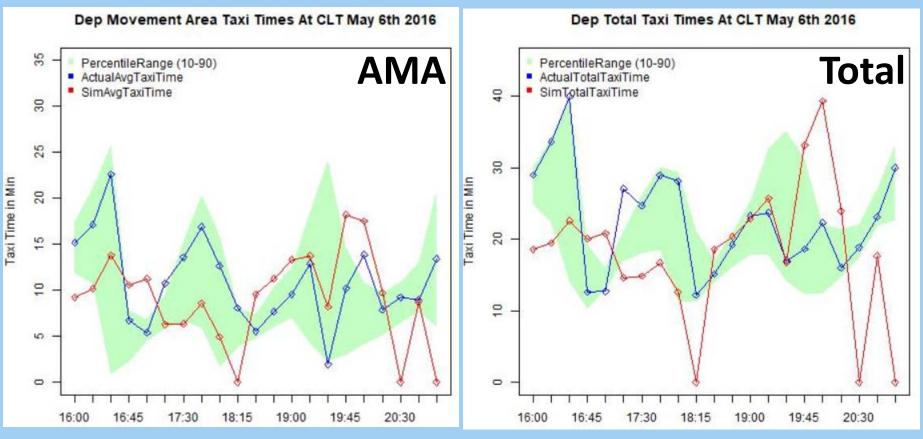



# Modeling of ATD-2 Benefit Mechanisms



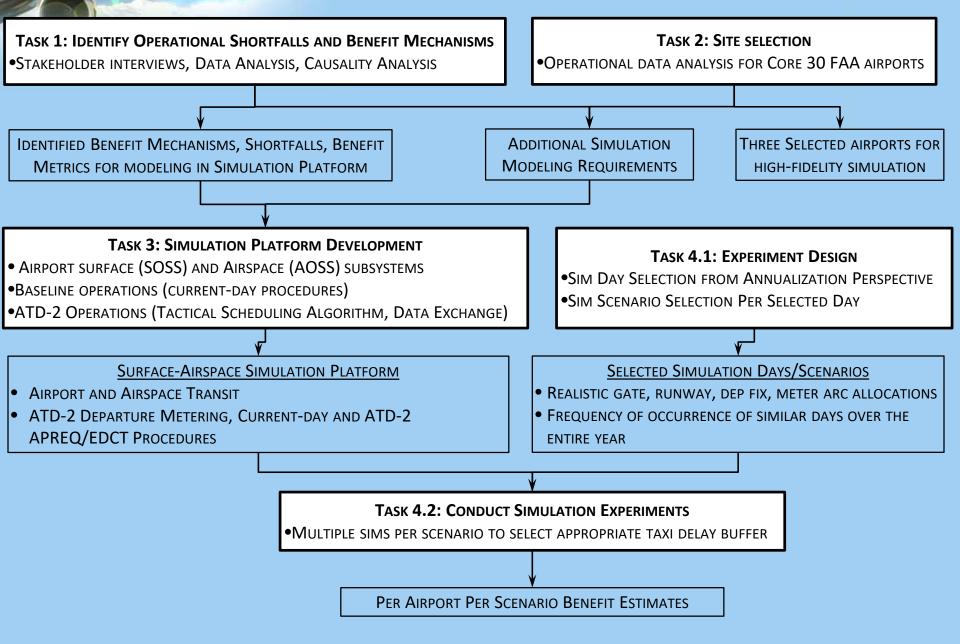


# Validation: Runway and Gate Counts


Sim #2: 05/06/2016, North Flow, 1600-2100 UTC

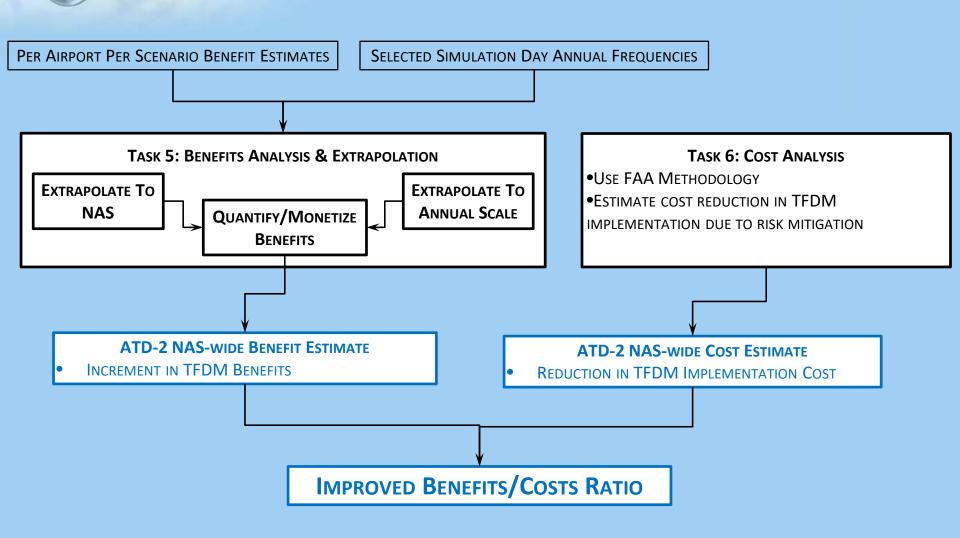





# **Validation: Taxi-Out Time**

#### Sim #2: 05/06/2016, North Flow, 1600-2100 UTC




### **Technical Tasks**







# **Technical Task (Cont.)**

